Arbeitspapier
Block bootstrap and long memory
We consider the issue of Block Bootstrap methods in processes that exhibit strong dependence. The main difficulty is to transform the series in such way that implementation of these techniques can provide an accurate approximation to the true distribution of the test statistic under consideration. The bootstrap algorithm we suggest consists of the following operations: given xt ~ I(d0), 1) estimate the long memory parameter and obtain d, 2) difference the series d times, 3) times, 3) apply the block bootstrap on the above and finally, 4) cumulate the bootstrap sample times. Repetition of steps 3 and 4 for a sufficient number of times, results to a successful estimation of the distribution of the test statistic. Furthermore, we establish the asymptotic validity of this method. Its finite-sample properties are investigated via Monte Carlo experiments and the results indicate that it can be used as an alternative, and in most of the cases to be preferred than the Sieve AR bootstrap for fractional processes.
- Sprache
-
Englisch
- Erschienen in
-
Series: Working Paper ; No. 679
- Klassifikation
-
Wirtschaft
Statistical Simulation Methods: General
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Computational Techniques; Simulation Modeling
- Thema
-
Block Bootstrap
long memory
resampling
strong dependence
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Kapetanios, George
Papailias, Fotis
- Ereignis
-
Veröffentlichung
- (wer)
-
Queen Mary University of London, School of Economics and Finance
- (wo)
-
London
- (wann)
-
2011
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:42 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Kapetanios, George
- Papailias, Fotis
- Queen Mary University of London, School of Economics and Finance
Entstanden
- 2011