Arbeitspapier
Quasi-maximum likelihood and the kernel block bootstrap for nonlinear dynamic models
This paper applies a novel bootstrap method, the kernel block bootstrap, to quasi-maximum likelihood estimation of dynamic models with stationary strong mixing data. The method first kernel weights the components comprising the quasi-log likelihood function in an appropriate way and then samples the resultant transformed components using the standard "m out of n" bootstrap. We investigate the first order asymptotic properties of the kernel block bootstrap method for quasi-maximum likelihood demonstrating, in particular, its consistency and the first-order asymptotic validity of the bootstrap approximation to the distribution of the quasi-maximum likelihood estimator. A set of simulation experiments for the mean regression model illustrates the efficacy of the kernel block bootstrap for quasi-maximum likelihood estimation.
- Sprache
-
Englisch
- Erschienen in
-
Series: cemmap working paper ; No. CWP60/19
- Klassifikation
-
Wirtschaft
Semiparametric and Nonparametric Methods: General
Statistical Simulation Methods: General
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
- Thema
-
Bootstrap
heteroskedastic and autocorrelation consistent inference
quasi-maximum likelihood estimation
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Parente, Paulo M. D. C.
Smith, Richard J.
- Ereignis
-
Veröffentlichung
- (wer)
-
Centre for Microdata Methods and Practice (cemmap)
- (wo)
-
London
- (wann)
-
2019
- DOI
-
doi:10.1920/wp.cem.2019.6019
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:41 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Parente, Paulo M. D. C.
- Smith, Richard J.
- Centre for Microdata Methods and Practice (cemmap)
Entstanden
- 2019