Arbeitspapier

Quasi-maximum likelihood estimation in generalized polynomial autoregressive conditional heteroscedasticity models

In this article, consistency and asymptotic normality of the quasi-maximum likelihood estimator (QMLE) in the class of polynomial augmented generalized autoregressive conditional heteroscedasticity models (GARCH) is proven. The result extends the results of the standard GARCH model to the class of polynomial augmented GARCH models which contains many commonly employed GARCH models as special cases. The results are obtained under mild conditions.

Language
Englisch

Bibliographic citation
Series: IWQW Discussion Papers ; No. 03/2013

Classification
Wirtschaft
Subject
asymptotic normality
consistency
polynomial augmented GARCH models
quasi-maximum likelihood estimation

Event
Geistige Schöpfung
(who)
Tinkl, Fabian
Event
Veröffentlichung
(who)
Friedrich-Alexander-Universität Erlangen-Nürnberg, Institut für Wirtschaftspolitik und Quantitative Wirtschaftsforschung (IWQW)
(where)
Nürnberg
(when)
2013

Handle
Last update
10.03.2025, 11:42 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Tinkl, Fabian
  • Friedrich-Alexander-Universität Erlangen-Nürnberg, Institut für Wirtschaftspolitik und Quantitative Wirtschaftsforschung (IWQW)

Time of origin

  • 2013

Other Objects (12)