Arbeitspapier

Properties of the maximum likelihood estimator in spatial autoregressive models

The (quasi-) maximum likelihood estimator (MLE) for the autoregressive parameter in a spatial autoregressive model cannot in general be written explicitly in terms of the data. The only known properties of the estimator have hitherto been its first-order asymptotic properties (Lee, 2004, Econometrica), derived under specific assumptions on the evolution of the spatial weights matrix involved. In this paper we show that the exact cumulative distribution function of the estimator can, under mild assumptions, be written down explicitly. A number of immediate consequences of the main result are discussed, and several examples of theoretical and practical interest are analyzed in detail. The examples are of interest in their own right, but also serve to illustrate some unexpected features of the distribution of the MLE. In particular, we show that the distribution of the MLE may not be supported on the entire parameter space, and may be nonanalytic at some points in its support.

Sprache
Englisch

Erschienen in
Series: cemmap working paper ; No. CWP44/13

Klassifikation
Wirtschaft
Hypothesis Testing: General
Single Equation Models; Single Variables: Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions
Thema
spatial autoregression
maximum likelihood estimation
group interaction
networks
complete bipartite graph

Ereignis
Geistige Schöpfung
(wer)
Hillier, Grant
Martellosio, Federico
Ereignis
Veröffentlichung
(wer)
Centre for Microdata Methods and Practice (cemmap)
(wo)
London
(wann)
2013

DOI
doi:10.1920/wp.cem.2013.4413
Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Hillier, Grant
  • Martellosio, Federico
  • Centre for Microdata Methods and Practice (cemmap)

Entstanden

  • 2013

Ähnliche Objekte (12)