Arbeitspapier

Inference via kernel smoothing of bootstrap P values

Resampling methods such as the bootstrap are routinely used to estimate the finite-sample null distributions of a range of test statistics. We present a simple and tractable way to perform classical hypothesis tests based upon a kernel estimate of the CDF of the bootstrap statistics. This approach has a number of appealing features: i) it can perform well when the number of bootstraps is extremely small, ii) it is approximately exact, and iii) it can yield substantial power gains relative to the conventional approach. The proposed approach is likely to be useful when the statistic being bootstrapped is computationally expensive.

Sprache
Englisch

Erschienen in
Series: Queen's Economics Department Working Paper ; No. 1054

Klassifikation
Wirtschaft
Hypothesis Testing: General
Semiparametric and Nonparametric Methods: General
Statistical Simulation Methods: General
Thema
resampling
Monte Carlo test
bootstrap test
percentiles
kernel
smoothing

Ereignis
Geistige Schöpfung
(wer)
Racine, Jeff
MacKinnon, James G.
Ereignis
Veröffentlichung
(wer)
Queen's University, Department of Economics
(wo)
Kingston (Ontario)
(wann)
2006

Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Racine, Jeff
  • MacKinnon, James G.
  • Queen's University, Department of Economics

Entstanden

  • 2006

Ähnliche Objekte (12)