Arbeitspapier

Boosting estimation of RBF neural networks for dependent data

This paper develops theoretical results for the estimation of radial basis function neural network specifications, for dependent data, that do not require iterative estimation techniques. Use of the properties of regression based boosting algorithms is made. Both consistency and rate results are derived. An application to nonparametric specification testing illustrates the usefulness of the results.

Language
Englisch

Bibliographic citation
Series: Working Paper ; No. 588

Classification
Wirtschaft
Hypothesis Testing: General
Estimation: General
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Subject
Neural Networks, Boosting
Neuronale Netze
Nichtparametrisches Verfahren
Schätztheorie

Event
Geistige Schöpfung
(who)
Kapetanios, George
Blake, Andrew P.
Event
Veröffentlichung
(who)
Queen Mary University of London, Department of Economics
(where)
London
(when)
2007

Handle
Last update
10.03.2025, 11:41 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Kapetanios, George
  • Blake, Andrew P.
  • Queen Mary University of London, Department of Economics

Time of origin

  • 2007

Other Objects (12)