Arbeitspapier
A comparison of estimation methods for dynamic factor models of large dimensions
The estimation of dynamic factor models for large sets of variables has attracted considerable attention recently, due to the increased availability of large datasets. In this paper we propose a new methodology for estimating factors from large datasets based on state space models, discuss its theoretical properties and compare its performance with that of two alternative estimation approaches based, respectively, on static and dynamic principal components. The new method appears to perform best in recovering the factors in a set of simulation experiments, with static principal components a close second best. Dynamic principal components appear to yield the best fit, but sometimes there are leakages across the common and idiosyncratic components of the series. A similar pattern emerges in an empirical application with a large dataset of US macroeconomic time series.
- Sprache
-
Englisch
- Erschienen in
-
Series: Working Paper ; No. 489
- Klassifikation
-
Wirtschaft
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Model Construction and Estimation
Monetary Policy
- Thema
-
Factor models, Principal components, Subspace algorithms
Faktorenanalyse
Schätztheorie
Zustandsraummodell
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Kapetanios, George
Marcellino, Massimiliano
- Ereignis
-
Veröffentlichung
- (wer)
-
Queen Mary University of London, Department of Economics
- (wo)
-
London
- (wann)
-
2003
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:45 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Kapetanios, George
- Marcellino, Massimiliano
- Queen Mary University of London, Department of Economics
Entstanden
- 2003