Arbeitspapier

Dual regression

We propose dual regression as an alternative to the quantile regression process for the global estimation of conditional distribution functions under minimal assumptions. Dual regression provides all the interpretational power of the quantile regression process while avoiding the need for repairing the intersecting conditional quantile surfaces that quantile regression often produces in practice. Our approach introduces a mathematical programming characterization of conditional distribution functions which, in its simplest form, is the dual program of a simultaneous estimator for linear location-scale models. We apply our general characterization to the specification and estimation of a flexible class of conditional distribution functions, and present asymptotic theory for the corresponding empirical dual regression process.

Language
Englisch

Bibliographic citation
Series: cemmap working paper ; No. CWP01/19

Classification
Wirtschaft
Subject
Conditional distribution
Duality
Monotonicity
Quantile regression
Method of moments
Mathematical programming
Convex approximation

Event
Geistige Schöpfung
(who)
Spady, Richard Henry
Stouli, Sami
Event
Veröffentlichung
(who)
Centre for Microdata Methods and Practice (cemmap)
(where)
London
(when)
2019

DOI
doi:10.1920/wp.cem.2019.0119
Handle
Last update
10.03.2025, 11:42 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Spady, Richard Henry
  • Stouli, Sami
  • Centre for Microdata Methods and Practice (cemmap)

Time of origin

  • 2019

Other Objects (12)