Arbeitspapier

Interquantile Expectation Regression

We propose a semiparametric estimator to determine the effects of explanatory variables on the conditional interquantile expectation (IQE) of the random variable of interest, without specifying the conditional distribution of the underlying random variables. IQE is the expected value of the random variable of interest given that its realization lies in an interval between two quantiles, or in an interval that covers the range of the distribution to the left or right of a quantile. Our so-called interquantile expectation regression (IQER) estimator is based on the GMM framework. We derive consistency and the asymptotic distribution of the estimator, and provide a consistent estimator of the asymptotic covariance matrix. Our results apply to stationary and ergodic time series. In a simulation study we show that our asymptotic theory provides an accurate approximation in small samples. We provide an empirical illustration in finance, in which we use the IQER estimator to estimate one-step-ahead daily expected shortfall conditional on previously observed daily, weekly, and monthly aggregated realized measures.

Sprache
Englisch

Erschienen in
Series: Tinbergen Institute Discussion Paper ; No. 17-034/III

Klassifikation
Wirtschaft
Estimation: General
Semiparametric and Nonparametric Methods: General
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Financial Econometrics
Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill
Thema
quantile
interquantile expectation
regression
generalized method of moments
risk management
expected shortfall

Ereignis
Geistige Schöpfung
(wer)
Barendse, Sander
Ereignis
Veröffentlichung
(wer)
Tinbergen Institute
(wo)
Amsterdam and Rotterdam
(wann)
2017

Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Barendse, Sander
  • Tinbergen Institute

Entstanden

  • 2017

Ähnliche Objekte (12)