Arbeitspapier

Tail Probabilities for Regression Estimators

Estimators of regression coefficients are known to be asymptotically normally distributed, provided certain regularity conditions are satisfied. In small samples and if the noise is not normally distributed, this can be a poor guide to the quality of the estimators. The paper addresses this problem for small and medium sized samples and heavy tailed noise. In particular, we assume that the noise is regularly varying, i.e., the tails of the noise distribution exhibit power law behavior. Then the distributions of the regression estimators are heavy tailed themselves. This is relevant for regressions involving financial data which are typically heavy tailed. In medium sized samples and with some dependency in the noise structure, the regression coefficient estimators can deviate considerably from their true values. The relevance of the theory is demonstrated for the highly variable cross country estimates of the expectations coefficient in yield curve regressions.

Sprache
Englisch

Erschienen in
Series: Tinbergen Institute Discussion Paper ; No. 06-085/2

Klassifikation
Wirtschaft
Estimation: General
Single Equation Models; Single Variables: General
Thema
heavy tails
regression estimators
expectations hypothesis

Ereignis
Geistige Schöpfung
(wer)
Mikosch, Thomas
de Vries, Casper G.
Ereignis
Veröffentlichung
(wer)
Tinbergen Institute
(wo)
Amsterdam and Rotterdam
(wann)
2006

Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Mikosch, Thomas
  • de Vries, Casper G.
  • Tinbergen Institute

Entstanden

  • 2006

Ähnliche Objekte (12)