Arbeitspapier

Tail Probabilities and Partial Moments for Quadratic Forms in Multivariate Generalized Hyperbolic Random Vectors

Countless test statistics can be written as quadratic forms in certain random vectors, or ratios thereof. Consequently, their distribution has received considerable attention in the literature. Except for a few special cases, no closed-form expression for the cdf exists, and one resorts to numerical methods. Traditionally the problem is analyzed under the assumption of joint Gaussianity; the algorithm that is usually employed is that of Imhof (1961). The present manuscript generalizes this result to the case of multivariate generalized hyperbolic (MGHyp) random vectors. The MGHyp is a very exible distribution which nests, amongothers, the multivariate t, Laplace, and variance gamma distributions. An expression for the first partial moment is also obtained, which plays a vital role in financial risk management. The proof involves a generalization of the classic inversion formula due to GilPelaez (1951).Two applications are considered: first, the nite-sample distribution of the 2SLS estimatorof a structural parameter. Second, the Value at Risk and Expected Shortfall of a quadraticportfolio with heavy-tailed risk factors.

Sprache
Englisch

Erschienen in
Series: Tinbergen Institute Discussion Paper ; No. 13-001/III

Klassifikation
Wirtschaft
Multiple or Simultaneous Equation Models: Instrumental Variables (IV) Estimation
Computational Techniques; Simulation Modeling
Portfolio Choice; Investment Decisions
Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill
Thema
Finite Samples
Characteristic Function
Transform Inversion
2SLS
CVaR
Expected Shortfall

Ereignis
Geistige Schöpfung
(wer)
Broda, Simon A.
Ereignis
Veröffentlichung
(wer)
Tinbergen Institute
(wo)
Amsterdam and Rotterdam
(wann)
2013

Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Broda, Simon A.
  • Tinbergen Institute

Entstanden

  • 2013

Ähnliche Objekte (12)