Arbeitspapier

Dual regression

We propose an alternative ('dual regression') to the quantile regression process for the global estimation of conditional distribution functions under minimal assumptions. Dual regression provides all the interpretational power of the quantile regression process while largely avoiding the need for 'rearrangement' to repair the intersecting conditional quantile surfaces that quantile regression often produces in practice. Our approach relies on a mathematical programming characterization of conditional distribution functions which, in its simplest form, provides a simultaneous estimator of location and scale parameters in a linear heteroscedastic model. The statistical properties of this estimator are derived.

Language
Englisch

Bibliographic citation
Series: cemmap working paper ; No. CWP04/16

Classification
Wirtschaft

Event
Geistige Schöpfung
(who)
Spady, Richard H.
Stouli, Sami
Event
Veröffentlichung
(who)
Centre for Microdata Methods and Practice (cemmap)
(where)
London
(when)
2015

DOI
doi:10.1920/wp.cem.2016.0416
Handle
Last update
10.03.2025, 11:41 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Spady, Richard H.
  • Stouli, Sami
  • Centre for Microdata Methods and Practice (cemmap)

Time of origin

  • 2015

Other Objects (12)