Arbeitspapier

Simultaneous meanvariance regression

We propose simultaneous mean-variance regression for the linear estimation and approximation of conditional mean functions. In the presence of heteroskedasticity of unknown form, our method accounts for varying dispersion in the regression outcome across the support of conditioning variables by using weights that are jointly determined with mean regression parameters. Simultaneity generates outcome predictions that are guaranteed to improve over ordinary least-squares prediction error, with corresponding parameter standard errors that are automatically valid. Under shape misspecification of the conditional mean and variance functions, we establish existence and uniqueness of the resulting approximations and characterize their formal interpretation. We illustrate our method with numerical simulations and two empirical applications to the estimation of the relationship between economic prosperity in 1500 and today, and demand for gasoline in the United States.

Sprache
Englisch

Erschienen in
Series: cemmap working paper ; No. CWP25/18

Klassifikation
Wirtschaft
Thema
Conditional mean and variance functions
linear regression
simultaneous approximation
heteroskedasticity
robust inference
misspecification
influence function
convexity
ordinary least-squares
dual regression

Ereignis
Geistige Schöpfung
(wer)
Spady, Richard Henry
Stouli, Sami
Ereignis
Veröffentlichung
(wer)
Centre for Microdata Methods and Practice (cemmap)
(wo)
London
(wann)
2018

DOI
doi:10.1920/wp.cem.2018.2518
Handle
Letzte Aktualisierung
10.03.2025, 11:41 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Spady, Richard Henry
  • Stouli, Sami
  • Centre for Microdata Methods and Practice (cemmap)

Entstanden

  • 2018

Ähnliche Objekte (12)