Artikel

Discretizing nonlinear, non-Gaussian Markov processes with exact conditional moments

Approximating stochastic processes by finite-state Markov chains is useful for reducing computational complexity when solving dynamic economic models. We provide a new method for accurately discretizing general Markov processes by matching low order moments of the conditional distributions using maximum entropy. In contrast to existing methods, our approach is not limited to linear Gaussian autoregressive processes. We apply our method to numerically solve asset pricing models with various underlying stochastic processes for the fundamentals, including a rare disasters model. Our method outperforms the solution accuracy of existing methods by orders of magnitude, while drastically simplifying the solution algorithm. The performance of our method is robust to parameters such as the number of grid points and the persistence of the process.

Sprache
Englisch

Erschienen in
Journal: Quantitative Economics ; ISSN: 1759-7331 ; Volume: 8 ; Year: 2017 ; Issue: 2 ; Pages: 651-683 ; New Haven, CT: The Econometric Society

Klassifikation
Wirtschaft
Computational Techniques; Simulation Modeling
Computable General Equilibrium Models
Asset Pricing; Trading Volume; Bond Interest Rates
Thema
Asset pricing models
duality
Kullback-Leibler information
numerical methods
solution accuracy

Ereignis
Geistige Schöpfung
(wer)
Farmer, Leland E.
Toda, Alexis Akira
Ereignis
Veröffentlichung
(wer)
The Econometric Society
(wo)
New Haven, CT
(wann)
2017

DOI
doi:10.3982/QE737
Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Farmer, Leland E.
  • Toda, Alexis Akira
  • The Econometric Society

Entstanden

  • 2017

Ähnliche Objekte (12)