Arbeitspapier

Adaptive Gaussian Markov random fields with applications in human brain mapping

Functional magnetic resonance imaging (fMRI) has become the standard technology in human brain mapping. Analyses of the massive spatio-temporal fMRI data sets often focus on parametric or nonparametric modeling of the temporal component, while spatial smoothing is based on Gaussian kernels or random fields. A weakness of Gaussian spatial smoothing is underestimation of activation peaks or blurring of high-curvature transitions between activated and non-activated brain regions. In this paper, we introduce a class of inhomogenous Markov random fields (MRF) with spatially adaptive interaction weights in a space-varying coefficient model for fMRI data. For given weights, the random field is conditionally Gaussian, but marginally it is non-Gaussian. Fully Bayesian inference, including estimation of weights and variance parameters, is carried out through efficient MCMC simulation. An application to fMRI data from a visual stimulation experiment demonstrates the performance of our approach in comparison to Gaussian and robustified non-Gaussian Markov random field models.

Sprache
Englisch

Erschienen in
Series: Discussion Paper ; No. 456

Thema
Adaptive weights
human brain mapping
inhomogeneous Markov random fields
MCMC
space-varying coefficient model
spatio-temporal modeling

Ereignis
Geistige Schöpfung
(wer)
Brezger, Andreas
Fahrmeir, Ludwig
Hennerfeind, Andrea
Ereignis
Veröffentlichung
(wer)
Ludwig-Maximilians-Universität München, Sonderforschungsbereich 386 - Statistische Analyse diskreter Strukturen
(wo)
München
(wann)
2005

DOI
doi:10.5282/ubm/epub.1825
Handle
URN
urn:nbn:de:bvb:19-epub-1825-7
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Brezger, Andreas
  • Fahrmeir, Ludwig
  • Hennerfeind, Andrea
  • Ludwig-Maximilians-Universität München, Sonderforschungsbereich 386 - Statistische Analyse diskreter Strukturen

Entstanden

  • 2005

Ähnliche Objekte (12)