Artikel

Markov chains under nonlinear expectation

In this paper, we consider continuous-time Markov chains with a finite state space under nonlinear expectations. We define so-called Q-operators as an extension of Q-matrices or rate matrices to a nonlinear setup, where the nonlinearity is due to model uncertainty. The main result gives a full characterization of convex Q-operators in terms of a positive maximum principle, a dual representation by means of Q-matrices, time-homogeneous Markov chains under convex expectations, and a class of nonlinear ordinary differential equations. This extends a classical characterization of generators of Markov chains to the case of model uncertainty in the generator. We further derive an explicit primal and dual representation of convex semigroups arising from Markov chains under convex expectations via the Fenchel–Legendre transformation of the generator. We illustrate the results with several numerical examples, where we compute price bounds for European contingent claims under model uncertainty in terms of the rate matrix.

Language
Englisch

Bibliographic citation
Journal: Mathematical Finance ; ISSN: 1467-9965 ; Volume: 31 ; Year: 2020 ; Issue: 1 ; Pages: 474-507 ; Hoboken, NJ: Wiley

Subject
generator of nonlinear semigroup
imprecise Markov chain
model uncertainty
nonlinear expectation
nonlinear ODE

Event
Geistige Schöpfung
(who)
Nendel, Max
Event
Veröffentlichung
(who)
Wiley
(where)
Hoboken, NJ
(when)
2020

DOI
doi:10.1111/mafi.12289
Handle
Last update
10.03.2025, 11:42 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Artikel

Associated

  • Nendel, Max
  • Wiley

Time of origin

  • 2020

Other Objects (12)