Arbeitspapier

Adaptive Nonparametric Community Detection

Understanding the topological structure of real world networks is of huge interest in a variety of fields. One of the way to investigate this structure is to find the groups of densely connected nodes called communities. This paper presents a new non-parametric method of community detection in networks called Adaptive Weights Community Detection. The idea of the algorithm is to associate a local community for each node. On every iteration the algorithm tests a hypothesis that two nodes are in the same community by comparing their local communities. The test rejects the hypothesis if the density of edges between these two local communities is lower than the density inside each one. A detailed performance analysis of the method shows its dominance over state-of- the-art methods on well known artificial and real world benchmarks.

Sprache
Englisch

Erschienen in
Series: IRTG 1792 Discussion Paper ; No. 2019-006

Klassifikation
Wirtschaft
Mathematical and Quantitative Methods: General
Thema
Adaptive weights
Gap coefficient
Graph clustering
Nonparametric
Overlapping communities

Ereignis
Geistige Schöpfung
(wer)
Adamyan, Larisa
Efimov, Kirill
Spokoiny, Vladimir
Ereignis
Veröffentlichung
(wer)
Humboldt-Universität zu Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series"
(wo)
Berlin
(wann)
2019

Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Adamyan, Larisa
  • Efimov, Kirill
  • Spokoiny, Vladimir
  • Humboldt-Universität zu Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series"

Entstanden

  • 2019

Ähnliche Objekte (12)