Arbeitspapier
Adaptive Nonparametric Clustering
This paper presents a new approach to non-parametric cluster analysis called Adaptive Weights Clustering (AWC). The idea is to identify the clustering structure by checking at different points and for dierent scales on departure from local homogeneity. The proposed procedure describes the clustering structure in terms of weights wij each of them measures the degree of local inhomogeneity for two neighbor local clusters using statistical tests of "no gap" between them. The procedure starts from very local scale, then the parameter of locality grows by some factor at each step. The method is fully adaptive and does not require to specify the number of clusters or their structure. The clustering results are not sensitive to noise and outliers, the procedure is able to recover dierent clusters with sharp edges or manifold structure. The method is scalable and computationally feasible. An intensive numerical study shows a state-of-the-art performance of the method in various articial examples and applications to text data. Our theoretical study states optimal sensitivity of AWC to local inhomogeneity.
- Sprache
-
Englisch
- Erschienen in
-
Series: IRTG 1792 Discussion Paper ; No. 2018-018
- Klassifikation
-
Wirtschaft
Mathematical and Quantitative Methods: General
- Thema
-
adaptive weights
clustering
gap coecient
manifold clustering
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Efimov, Kirill
Adamyan, Larisa
Spokoiny, Vladimir
- Ereignis
-
Veröffentlichung
- (wer)
-
Humboldt-Universität zu Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series"
- (wo)
-
Berlin
- (wann)
-
2018
- Handle
- Letzte Aktualisierung
-
20.09.2024, 08:22 MESZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Efimov, Kirill
- Adamyan, Larisa
- Spokoiny, Vladimir
- Humboldt-Universität zu Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series"
Entstanden
- 2018