Arbeitspapier
Nonparametric significance testing
A procedure for testing the signicance of a subset of explanatory variables in a nonparametric regression is proposed. Our test statistic uses the kernel method. Under the null hypothesis of no effect of the variables under test, we show that our test statistic has a nhp2/2 standard normal limiting distribution, where p2 is the dimension of the complete set of regressors. Our test is one-sided, consistent against all alternatives and detect local alternatives approaching the null at rate slower than n-1/2 h-p2/4. Our Monte-Carlo experiments indicate that it outperforms the test proposed by Fan and Li (1996).
- Language
-
Englisch
- Bibliographic citation
-
Series: SFB 373 Discussion Paper ; No. 1998,75
- Classification
-
Wirtschaft
Model Evaluation, Validation, and Selection
Semiparametric and Nonparametric Methods: General
- Subject
-
Hypothesis testing
Kernel estimation
Nested models
- Event
-
Geistige Schöpfung
- (who)
-
Lavergne, Pascal
Vuong, Quang
- Event
-
Veröffentlichung
- (who)
-
Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes
- (where)
-
Berlin
- (when)
-
1998
- Handle
- URN
-
urn:nbn:de:kobv:11-10060522
- Last update
-
10.03.2025, 11:44 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Arbeitspapier
Associated
- Lavergne, Pascal
- Vuong, Quang
- Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes
Time of origin
- 1998