Arbeitspapier

Nonparametric significance testing

A procedure for testing the signicance of a subset of explanatory variables in a nonparametric regression is proposed. Our test statistic uses the kernel method. Under the null hypothesis of no effect of the variables under test, we show that our test statistic has a nhp2/2 standard normal limiting distribution, where p2 is the dimension of the complete set of regressors. Our test is one-sided, consistent against all alternatives and detect local alternatives approaching the null at rate slower than n-1/2 h-p2/4. Our Monte-Carlo experiments indicate that it outperforms the test proposed by Fan and Li (1996).

Language
Englisch

Bibliographic citation
Series: SFB 373 Discussion Paper ; No. 1998,75

Classification
Wirtschaft
Model Evaluation, Validation, and Selection
Semiparametric and Nonparametric Methods: General
Subject
Hypothesis testing
Kernel estimation
Nested models

Event
Geistige Schöpfung
(who)
Lavergne, Pascal
Vuong, Quang
Event
Veröffentlichung
(who)
Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes
(where)
Berlin
(when)
1998

Handle
URN
urn:nbn:de:kobv:11-10060522
Last update
10.03.2025, 11:44 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Lavergne, Pascal
  • Vuong, Quang
  • Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes

Time of origin

  • 1998

Other Objects (12)