Arbeitspapier

Nonparametric significance testing

A procedure for testing the signicance of a subset of explanatory variables in a nonparametric regression is proposed. Our test statistic uses the kernel method. Under the null hypothesis of no effect of the variables under test, we show that our test statistic has a nhp2/2 standard normal limiting distribution, where p2 is the dimension of the complete set of regressors. Our test is one-sided, consistent against all alternatives and detect local alternatives approaching the null at rate slower than n-1/2 h-p2/4. Our Monte-Carlo experiments indicate that it outperforms the test proposed by Fan and Li (1996).

Sprache
Englisch

Erschienen in
Series: SFB 373 Discussion Paper ; No. 1998,75

Klassifikation
Wirtschaft
Model Evaluation, Validation, and Selection
Semiparametric and Nonparametric Methods: General
Thema
Hypothesis testing
Kernel estimation
Nested models

Ereignis
Geistige Schöpfung
(wer)
Lavergne, Pascal
Vuong, Quang
Ereignis
Veröffentlichung
(wer)
Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes
(wo)
Berlin
(wann)
1998

Handle
URN
urn:nbn:de:kobv:11-10060522
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Lavergne, Pascal
  • Vuong, Quang
  • Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes

Entstanden

  • 1998

Ähnliche Objekte (12)