Arbeitspapier

Large dynamic covariance matrices

Second moments of asset returns are important for risk management and portfolio selection. The problem of estimating second moments can be approached from two angles: time series and the cross-section. In time series, the key is to account for conditional heteroskedasticity; a favored model is Dynamic Conditional Correlation (DCC), derived from the ARCH/GARCH family started by Engle (1982). In the cross-section, the key is to correct in-sample biases of sample covariance matrix eigenvalues; a favored model is nonlinear shrinkage, derived from Random Matrix Theory (RMT). The present paper marries these two strands of literature in order to deliver improved estimation of large dynamic covariance matrices.

Sprache
Englisch

Erschienen in
Series: Working Paper ; No. 231

Klassifikation
Wirtschaft
Estimation: General
Financial Econometrics
Portfolio Choice; Investment Decisions
Thema
Composite likelihood
dynamic conditional correlations
GARCH
Markowitz portfolio selection
nonlinear shrinkage

Ereignis
Geistige Schöpfung
(wer)
Engle, Robert F.
Ledoit, Olivier
Wolf, Michael
Ereignis
Veröffentlichung
(wer)
University of Zurich, Department of Economics
(wo)
Zurich
(wann)
2017

DOI
doi:10.5167/uzh-125469
Handle
Letzte Aktualisierung
03.05.2025, 12:48 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Engle, Robert F.
  • Ledoit, Olivier
  • Wolf, Michael
  • University of Zurich, Department of Economics

Entstanden

  • 2017

Ähnliche Objekte (12)