Arbeitspapier

Large dynamic covariance matrices: Enhancements based on intraday data

Multivariate GARCH models do not perform well in large dimensions due to the so-called curse of dimensionality. The recent DCC-NL model of Engle et al. (2019) is able to overcome this curse via nonlinear shrinkage estimation of the unconditional correlation matrix. In this paper, we show how performance can be increased further by using open/high/low/close (OHLC) price data instead of simply using daily returns. A key innovation, for the improved modeling of not only dynamic variances but also of dynamic correlations, is the concept of a regularized return, obtained from a volatility proxy in conjunction with a smoothed sign of the observed return.

Sprache
Englisch

Erschienen in
Series: Working Paper ; No. 356

Klassifikation
Wirtschaft
Estimation: General
Financial Econometrics
Portfolio Choice; Investment Decisions
Thema
Dynamic conditional correlations
intraday data
Markowitz portfolio selection
multivariate GARCH
nonlinear shrinkage

Ereignis
Geistige Schöpfung
(wer)
De Nard, Gianluca
Engle, Robert F.
Ledoit, Olivier
Wolf, Michael
Ereignis
Veröffentlichung
(wer)
University of Zurich, Department of Economics
(wo)
Zurich
(wann)
2021

DOI
doi:10.5167/uzh-188753
Handle
Letzte Aktualisierung
10.03.2025, 11:45 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • De Nard, Gianluca
  • Engle, Robert F.
  • Ledoit, Olivier
  • Wolf, Michael
  • University of Zurich, Department of Economics

Entstanden

  • 2021

Ähnliche Objekte (12)