Structural and functional characterisation of the methionine adenosyltransferase from Thermococcus kodakarensis
Abstract: Background
Methionine adenosyltransferases catalyse the synthesis of S-adenosylmethionine, a cofactor abundant in all domains of life. In contrast to the enzymes from bacteria and eukarya that show high sequence similarity, methionine adenosyltransferases from archaea diverge on the amino acid sequence level and only few conserved residues are retained.
Results
We describe the initial characterisation and the crystal structure of the methionine adenosyltransferase from the hyperthermophilic archaeon Thermococcus kodakarensis. As described for other archaeal methionine adenosyltransferases the enzyme is a dimer in solution and shows high temperature stability. The overall structure is very similar to that of the bacterial and eukaryotic enzymes described, with some additional features that might add to the stability of the enzyme. Compared to bacterial and eukaryotic structures, the active site architecture is largely conserved, with some variation in the substrate/product-binding residues. A flexible loop that was not fully ordered in previous structures without ligands in the active side is clearly visible and forms a helix that leaves an entrance to the active site open.
Conclusions
The similar three-dimensional structures of archaeal and bacterial or eukaryotic methionine adenosyltransferases support that these enzymes share an early common ancestor from which they evolved independently, explaining the low similarity in their amino acid sequences. Furthermore, methionine adenosyltransferase from T. kodakarensis is the first structure without any ligands bound in the active site where the flexible loop covering the entrance to the active site is fully ordered, supporting a mechanism postulated earlier for the methionine adenosyltransferase from E. coli. The structure will serve as a starting point for further mechanistic studies and permit the generation of enzyme variants with different characteristics by rational design.
Keywords
S-Adenosylmethionine synthase - S-Adenosylmethionine - Thermostable enzyme - Archaea
- Standort
-
Deutsche Nationalbibliothek Frankfurt am Main
- Umfang
-
Online-Ressource
- Sprache
-
Englisch
- Anmerkungen
-
BMC Structural Biology. 13 (2013), 22, DOI 10.1186/1472-6807-13-22, issn: 1472-6807
IN COPYRIGHT http://rightsstatements.org/page/InC/1.0 rs
- Klassifikation
-
Biowissenschaften, Biologie
- Schlagwort
-
Adenosylmethionin
Synthasen
Enzym
Temperaturbeständigkeit
- Ereignis
-
Veröffentlichung
- (wo)
-
Freiburg
- (wer)
-
Universität
- (wann)
-
2013
- Urheber
- Beteiligte Personen und Organisationen
- DOI
-
10.1186/1472-6807-13-22
- URN
-
urn:nbn:de:bsz:25-freidok-124773
- Rechteinformation
-
Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Letzte Aktualisierung
-
15.08.2025, 07:24 MESZ
Datenpartner
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Beteiligte
- Netzer, Julia Clarissa
- Siegrist, Jutta Irmgard
- Gerhardt, Stefan
- Erb, Annette
- Blaesi, Simone
- Einsle, Oliver
- Andexer, Jennifer Nina
- Albert-Ludwigs-Universität Freiburg. Institut für Biochemie
- Albert-Ludwigs-Universität Freiburg. Institut für Pharmazeutische Wissenschaften
- Albert-Ludwigs-Universität Freiburg. Centre for Biological Signalling Studies
- Albert-Ludwigs-Universität Freiburg
- Universität
Entstanden
- 2013
Ähnliche Objekte (12)

Structural and functional characterization of the Na+-translocating NADH:quinone oxidoreductase from Vibrio cholerae and YihU of the sulfoglycolysis pathway : = Strukturelle und funktionelle Charakterisierung der Na+-translozierenden NADH:Ubichinon Oxidoreduktase aus Vibrio cholerae und YihU des Sulfoglycolysis-Stoffwechselweges

Crystal structure determination of a subfragment of the NADH:ubiquinone oxidoreductase from Aquifex aeolicus and functional reconstitution of a nitrate - nitrite transporter from Escherichia coli : = Kristallstruktur eines Subfragmentes der NADH:Ubichinon Oxidoreduktase aus Aquifex aeolicus und die funktionelle Rekonstitution eines Nitrat- Nitrit Transporters aus Escherichia coli
