Linking PIAAC Data to Individual Administrative Data: Insights from a German Pilot Project

Abstract: Linking survey data to administrative data offers researchers many opportunities. In particular, it enables them to enrich survey data with additional information without increasing the burden on respondents. German PIAAC data on individual skills, for example, can be combined with administrative data on individual employment histories. However, as the linkage of survey data with administrative data records requires the consent of respondents, there may be bias in the linked dataset if only a subsample of respondents - for example, high-educated individuals - give their consent. The present chapter provides an overview of the pilot project about linking the German PIAAC data with individual administrative data. In a first step, we illustrate characteristics of the linkable datasets and describe the linkage process and its methodological challenges. In a second step, we provide an illustrative example of the use of the linked data and investigate how the skills assessed in PIAAC are

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource, 271-290 S.
Language
Englisch
Notes
Veröffentlichungsversion
begutachtet
In: Maehler, Débora B. (Hg.), Rammstedt, Beatrice (Hg.): Large-Scale Cognitive Assessment: Analyzing PIAAC Data. 2020. S. 271-290. ISBN 978-3-030-47515-4

Classification
Wirtschaft

Event
Veröffentlichung
(where)
Mannheim, Cham
(who)
SSOAR, GESIS – Leibniz-Institut für Sozialwissenschaften e.V., Springer
(when)
2020
Creator
Daikeler, Jessica
Gauly, Britta
Rosenthal, Matthias
Contributor
Maehler, Débora B.
Rammstedt, Beatrice

DOI
10.1007/978-3-030-47515-4_11
URN
urn:nbn:de:101:1-2021102113571895070897
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
25.03.2025, 1:49 PM CET

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Daikeler, Jessica
  • Gauly, Britta
  • Rosenthal, Matthias
  • Maehler, Débora B.
  • Rammstedt, Beatrice
  • SSOAR, GESIS – Leibniz-Institut für Sozialwissenschaften e.V., Springer

Time of origin

  • 2020

Other Objects (12)