Arbeitspapier
Let's get LADE: Robust estimation of semiparametric multiplicative volatility models
We investigate a model in which we connect slowly time varying unconditional long-run volatility with short-run conditional volatility whose representation is given as a semi-strong GARCH (1,1) process with heavy tailed errors. We focus on robust estimation of both long-run and short-run volatilities. Our estimation is semiparametric since the long-run volatility is totally unspeci.ed whereas the short-run conditional volatility is a parametric semi-strong GARCH (1,1) process. We propose different robust estimation methods for nonstationary and strictly stationary GARCH parameters with nonparametric long run volatility function. Our estimation is based on a two-step LAD procedure. We establish the relevant asymptotic theory of the proposed estimators. Numerical results lend support to our theoretical results.
- Sprache
-
Englisch
- Erschienen in
-
Series: cemmap working paper ; No. CWP11/13
- Klassifikation
-
Wirtschaft
Estimation: General
Semiparametric and Nonparametric Methods: General
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Asset Pricing; Trading Volume; Bond Interest Rates
- Thema
-
semiparametric
heavy-tailed errors
time varying
nonstationary multiplicative GARCH
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Koo, Bonsoo
Linton, Oliver
- Ereignis
-
Veröffentlichung
- (wer)
-
Centre for Microdata Methods and Practice (cemmap)
- (wo)
-
London
- (wann)
-
2013
- DOI
-
doi:10.1920/wp.cem.2013.1113
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:41 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Koo, Bonsoo
- Linton, Oliver
- Centre for Microdata Methods and Practice (cemmap)
Entstanden
- 2013