Arbeitspapier

A New Semiparametric Volatility Model

We propose a new semiparametric observation-driven volatility model where the form of the error density directly influences the volatility dynamics. This feature distinguishes our model from standard semiparametric GARCH models. The link between the estimated error density and the volatility dynamics follows from the application of the generalized autoregressive score framework of Creal, Koopman, and Lucas (2012). We provide simulated evidence for the estimation efficiency and forecast accuracy of the new model, particularly if errors are fat-tailed and possibly skewed. In an application to equity return data we find that the model also does well in density forecasting.

Sprache
Englisch

Erschienen in
Series: Tinbergen Institute Discussion Paper ; No. 12-055/2/DSF35

Klassifikation
Wirtschaft
Econometric and Statistical Methods and Methodology: General
Semiparametric and Nonparametric Methods: General
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Thema
volatility clustering
Generalized Autoregressive Score model
kernel density estimation
density forecast evaluation
Zeitreihenanalyse
Nichtparametrisches Verfahren
ARCH-Modell
Theorie

Ereignis
Geistige Schöpfung
(wer)
Ji, Jiangyu
Lucas, Andre
Ereignis
Veröffentlichung
(wer)
Tinbergen Institute
(wo)
Amsterdam and Rotterdam
(wann)
2012

Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Ji, Jiangyu
  • Lucas, Andre
  • Tinbergen Institute

Entstanden

  • 2012

Ähnliche Objekte (12)