Arbeitspapier
A New Semiparametric Volatility Model
We propose a new semiparametric observation-driven volatility model where the form of the error density directly influences the volatility dynamics. This feature distinguishes our model from standard semiparametric GARCH models. The link between the estimated error density and the volatility dynamics follows from the application of the generalized autoregressive score framework of Creal, Koopman, and Lucas (2012). We provide simulated evidence for the estimation efficiency and forecast accuracy of the new model, particularly if errors are fat-tailed and possibly skewed. In an application to equity return data we find that the model also does well in density forecasting.
- Sprache
-
Englisch
- Erschienen in
-
Series: Tinbergen Institute Discussion Paper ; No. 12-055/2/DSF35
- Klassifikation
-
Wirtschaft
Econometric and Statistical Methods and Methodology: General
Semiparametric and Nonparametric Methods: General
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
- Thema
-
volatility clustering
Generalized Autoregressive Score model
kernel density estimation
density forecast evaluation
Zeitreihenanalyse
Nichtparametrisches Verfahren
ARCH-Modell
Theorie
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Ji, Jiangyu
Lucas, Andre
- Ereignis
-
Veröffentlichung
- (wer)
-
Tinbergen Institute
- (wo)
-
Amsterdam and Rotterdam
- (wann)
-
2012
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:43 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Ji, Jiangyu
- Lucas, Andre
- Tinbergen Institute
Entstanden
- 2012