Arbeitspapier

Specification Testing of Production in a Stochastic Frontier Model

Parametric production frontier functions are frequently used in stochastic frontier models, but there do not seem to be any empirical test statistics for its plausibility. To bridge the gap in the literature, we develop two test statistics based on local smoothing and an empirical process, respectively. Residual-based wild bootstrap versions of these two test statistics are also suggested. The distributions of technical inefficiency and the noise term are not specified, which allows specification testing of the production frontier function even under heteroscedasticity. Simulation studies and a real data example are presented to examine the finite sample sizes and powers of the test statistics. The theory developed in this paper is useful for production mangers in their decisions on production.

Sprache
Englisch

Erschienen in
Series: Tinbergen Institute Discussion Paper ; No. 17-097/III

Klassifikation
Wirtschaft
Estimation: General
Semiparametric and Nonparametric Methods: General
Criteria for Decision-Making under Risk and Uncertainty
Thema
Production frontier function
Stochastic frontier model
Specification testing
Wild bootstrap
Smoothing process
Empirical process
Simulations

Ereignis
Geistige Schöpfung
(wer)
Guo, Xu
Li, Gao-Rong
McAleer, Michael
Wong, Wing-Keung
Ereignis
Veröffentlichung
(wer)
Tinbergen Institute
(wo)
Amsterdam and Rotterdam
(wann)
2017

Handle
Letzte Aktualisierung
10.03.2025, 11:45 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Guo, Xu
  • Li, Gao-Rong
  • McAleer, Michael
  • Wong, Wing-Keung
  • Tinbergen Institute

Entstanden

  • 2017

Ähnliche Objekte (12)