Arbeitspapier
A One Line Derivation of EGARCH
One of the most popular univariate asymmetric conditional volatility models is the exponential GARCH (or EGARCH) specification. In addition to asymmetry, which captures the different effects on conditional volatility of positive and negative effects of equal magnitude, EGARCH can also accommodate leverage, which is the negative correlation between returns shocks and subsequent shocks to volatility. However, there are as yet no statistical properties available for the (quasi-) maximum likelihood estimator of the EGARCH parameters. It is often argued heuristically that the reason for the lack of statistical properties arises from the presence in the model of an absolute value of a function of the parameters, which does not permit analytical derivatives or the derivation of statistical properties. It is shown in this paper that: (i) the EGARCH model can be derived from a random coefficient complex nonlinear moving average (RCCNMA) process; and (ii) the reason for the lack of statistical properties of the estimators of EGARCH is that the stationarity and invertibility conditions for the RCCNMA process are not known.
- Sprache
-
Englisch
- Erschienen in
-
Series: Tinbergen Institute Discussion Paper ; No. 14-069/III
- Klassifikation
-
Wirtschaft
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Model Evaluation, Validation, and Selection
Financial Econometrics
Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill
- Thema
-
Leverage
asymmetry
existence
random coefficient models
complex nonlinear moving average process
- Ereignis
-
Geistige Schöpfung
- (wer)
-
McAleer, Michael
Hafner, Christian M.
- Ereignis
-
Veröffentlichung
- (wer)
-
Tinbergen Institute
- (wo)
-
Amsterdam and Rotterdam
- (wann)
-
2014
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:45 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- McAleer, Michael
- Hafner, Christian M.
- Tinbergen Institute
Entstanden
- 2014