Arbeitspapier

DCC-HEAVY: A multivariate GARCH model with realized measures of variance and correlation

This paper proposes a new class of multivariate volatility model that utilising high-frequency data. We call this model the DCC-HEAVY model as key ingredients are the Engle (2002) DCC model and Shephard and Sheppard (2012) HEAVY model. We discuss the models' dynamics and highlight their differences from DCC-GARCH models. Specifically, the dynamics of conditional variances are driven by the lagged realized variances, while the dynamics of conditional correlations are driven by the lagged realized correlations in the DCC-HEAVY model. The new model removes well known asymptotic bias in DCC-GARCH model estimation and has more desirable asymptotic properties. We also derive a Quasi-maximum likelihood estimation and provide closed-form formulas for multi-step forecasts. Empirical results suggest that the DCC-HEAVY model outperforms the DCC-GARCH model in and out-of-sample.

Sprache
Englisch

Erschienen in
Series: Cardiff Economics Working Papers ; No. E2019/5

Klassifikation
Wirtschaft
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Financial Econometrics
Financial Forecasting and Simulation
Thema
HEAVY model
Multivariate volatility
High-frequency data
Forecasting
Wishart distribution

Ereignis
Geistige Schöpfung
(wer)
Xu, Yongdeng
Ereignis
Veröffentlichung
(wer)
Cardiff University, Cardiff Business School
(wo)
Cardiff
(wann)
2019

Handle
Letzte Aktualisierung
10.03.2025, 11:41 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Xu, Yongdeng
  • Cardiff University, Cardiff Business School

Entstanden

  • 2019

Ähnliche Objekte (12)