Arbeitspapier

Testing for Causality in Variance using Multivariate GARCH Models

Tests of causality in variance in multiple time series have been proposed recently, based on residuals of estimated univariate models. Although such tests are applied frequently little is known about their power properties. In this paper we show that a convenient alternative to residual based testing is to specify a multivariate volatility model, such as multivariate GARCH (or BEKK), and construct a Wald test on noncausality in variance. We compare both approaches to testing causality in variance in terms of asymptotic and finite sample properties. The Wald test is shown to have superior power properties under a sequence of local alternatives. Furthermore, we show by simulation that the Wald test is quite robust to misspecification of the order of the BEKK model, but that empirical power decreases substantially when asymmetries in volatility are ignored.

Sprache
Englisch

Erschienen in
Series: Economics Working Paper ; No. 2004-03

Klassifikation
Wirtschaft
Model Evaluation, Validation, and Selection
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Thema
causality
multivariate volatility
local power
ARCH-Modell
Kausalanalyse
Statistischer Test
Varianzanalyse
Theorie

Ereignis
Geistige Schöpfung
(wer)
Hafner, Christian M.
Herwartz, Helmut
Ereignis
Veröffentlichung
(wer)
Kiel University, Department of Economics
(wo)
Kiel
(wann)
2004

Handle
URN
urn:nbn:de:101:1-200911033770
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Hafner, Christian M.
  • Herwartz, Helmut
  • Kiel University, Department of Economics

Entstanden

  • 2004

Ähnliche Objekte (12)