Bericht

Nowcasting the Finnish economy with a large Bayesian vector autoregressive model

Timely and accurate assessment of current macroeconomic activity is crucial for policymakers and other economic agents. Nowcasting aims to forecast the current economic situation ahead of official data releases. We develop and apply a large Bayesian vector autoregressive (BVAR) model to nowcast quarterly GDP growth rate of the Finnish economy. We study the BVAR model’s out-of-sample performance at different forecasting horizons, and compare to various bridge models and a dynamic factor model.

Language
Englisch

Bibliographic citation
Series: BoF Economics Review ; No. 6/2017

Classification
Wirtschaft
Model Evaluation, Validation, and Selection
Forecasting Models; Simulation Methods
Business Fluctuations; Cycles
Prices, Business Fluctuations, and Cycles: Forecasting and Simulation: Models and Applications
Subject
ennusteet
mallit
BVAR
Suomi
bkt

Event
Geistige Schöpfung
(who)
Itkonen, Juha
Juvonen, Petteri
Event
Veröffentlichung
(who)
Bank of Finland
(where)
Helsinki
(when)
2017

Handle
Last update
10.03.2025, 11:44 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Bericht

Associated

  • Itkonen, Juha
  • Juvonen, Petteri
  • Bank of Finland

Time of origin

  • 2017

Other Objects (12)