Artikel

Generalized binary vector autoregressive processes

Vector‐valued‐60 extensions of univariate generalized binary auto‐regressive (gbAR) processes are proposed that enable the joint modeling of serial and cross‐sectional‐50 dependence of multi‐variate binary data. The resulting class of generalized binary vector auto‐regressive (gbVAR) models is parsimonious, nicely interpretable and allows also to model negative dependence. We provide stationarity conditions and derive moving‐average‐type representations that allow to prove geometric mixing properties. Furthermore, we derive general stochastic properties of gbVAR processes, including formulae for transition probabilities. In particular, classical Yule–Walker equations hold that facilitate parameter estimation in gbVAR models. In simulations, we investigate the estimation performance, and for illustration, we apply gbVAR models to particulate matter (PM10, ‘fine dust’) alarm data observed at six monitoring stations in Stuttgart, Germany.

Sprache
Englisch

Erschienen in
Journal: Journal of Time Series Analysis ; ISSN: 1467-9892 ; Volume: 43 ; Year: 2021 ; Issue: 2 ; Pages: 285-311 ; Oxford, UK: John Wiley & Sons, Ltd

Thema
Binary data
mixing properties
multi‐variate time series
stationarity conditions
transition probabilities
Yule–Walker equations

Ereignis
Geistige Schöpfung
(wer)
Jentsch, Carsten
Reichmann, Lena
Ereignis
Veröffentlichung
(wer)
John Wiley & Sons, Ltd
(wo)
Oxford, UK
(wann)
2021

DOI
doi:10.1111/jtsa.12614
Handle
Letzte Aktualisierung
10.03.2025, 11:45 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Jentsch, Carsten
  • Reichmann, Lena
  • John Wiley & Sons, Ltd

Entstanden

  • 2021

Ähnliche Objekte (12)