Arbeitspapier
A Bayesian Infinite Hidden Markov Vector Autoregressive Model
We propose a Bayesian infinite hidden Markov model to estimate time-varying parameters in a vector autoregressive model. The Markov structure allows for heterogeneity over time while accounting for state-persistence. By modelling the transition distribution as a Dirichlet process mixture model, parameters can vary over potentially an infinite number of regimes. The Dirichlet process however favours a parsimonious model without imposing restrictions on the parameter space. An empirical application demonstrates the ability of the model to capture both smooth and abrupt parameter changes over time, and a real-time forecasting exercise shows excellent predictive performance even in large dimensional VARs.
- Sprache
-
Englisch
- Erschienen in
-
Series: Tinbergen Institute Discussion Paper ; No. 16-107/III
- Klassifikation
-
Wirtschaft
Bayesian Analysis: General
Semiparametric and Nonparametric Methods: General
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Model Construction and Estimation
Quantitative Policy Modeling
- Thema
-
Time-Varying Parameter Vector Autoregressive Model
Semi-parametric Bayesian Inference
Dirichlet Process Mixture Model
Hidden Markov Chain
Monetary Policy Analysis
Real-time Forecasting
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Nibbering, Didier
Paap, Richard
van der Wel, Michel
- Ereignis
-
Veröffentlichung
- (wer)
-
Tinbergen Institute
- (wo)
-
Amsterdam and Rotterdam
- (wann)
-
2016
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:41 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Nibbering, Didier
- Paap, Richard
- van der Wel, Michel
- Tinbergen Institute
Entstanden
- 2016