Arbeitspapier

Outliers in semi-parametric estimation of treatment effects

Average treatment effects estimands can present significant bias under the presence of outliers. Moreover, outliers can be particularly hard to detect, creating bias and inconsistency in the semi-parametric ATE estimads. In this paper, we use Monte Carlo simulations to demonstrate that semi-parametric methods, such as matching, are biased in the presence of outliers. Bad and good leverage points outliers are considered. The bias arises because bad leverage points completely change the distribution of the metrics used to define counterfactuals. Whereas good leverage points increase the chance of breaking the common support condition and distort the balance of the covariates and which may push practitioners to misspecify the propensity score. We provide some clues to diagnose the presence of outliers and propose a reweighting estimator that is robust against outliers based on the Stahel-Donoho multivariate estimator of scale and location. An application of this estimator to LaLonde's (1986) data allows us to explain the Dehejia and Wahba (2002) and Smith and Todd (2005) debate on the inability of matching estimators to deal with the evaluation problem.

Sprache
Englisch

Erschienen in
Series: Development Research Working Paper Series ; No. 06/2017

Klassifikation
Wirtschaft
Single Equation Models; Single Variables: Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions
Semiparametric and Nonparametric Methods: General
Model Evaluation, Validation, and Selection
Estimation: General
Thema
Treatment effects
Outliers
Propensity score
Mahalanobis distance

Ereignis
Geistige Schöpfung
(wer)
Ontiveros, Darwin Ugarte
Canavire-Bacarreza, Gustavo
Castro, Luis
Ereignis
Veröffentlichung
(wer)
Institute for Advanced Development Studies (INESAD)
(wo)
La Paz
(wann)
2017

Handle
Letzte Aktualisierung
10.03.2025, 11:41 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Ontiveros, Darwin Ugarte
  • Canavire-Bacarreza, Gustavo
  • Castro, Luis
  • Institute for Advanced Development Studies (INESAD)

Entstanden

  • 2017

Ähnliche Objekte (12)