Artikel
Outliers in semi-parametric estimation of treatment effects
Outliers can be particularly hard to detect, creating bias and inconsistency in the semi-parametric estimates. In this paper, we use Monte Carlo simulations to demonstrate that semi-parametric methods, such as matching, are biased in the presence of outliers. Bad and good leverage point outliers are considered. Bias arises in the case of bad leverage points because they completely change the distribution of the metrics used to define counterfactuals; good leverage points, on the other hand, increase the chance of breaking the common support condition and distort the balance of the covariates, which may push practitioners to misspecify the propensity score or the distance measures. We provide some clues to identify and correct for the effects of outliers following a reweighting strategy in the spirit of the Stahel-Donoho (SD) multivariate estimator of scale and location, and the S-estimator of multivariate location (Smultiv). An application of this strategy to experimental data is also implemented.
- Sprache
-
Englisch
- Erschienen in
-
Journal: Econometrics ; ISSN: 2225-1146 ; Volume: 9 ; Year: 2021 ; Issue: 2 ; Pages: 1-32 ; Basel: MDPI
- Klassifikation
-
Wirtschaft
Single Equation Models; Single Variables: Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions
Semiparametric and Nonparametric Methods: General
Model Evaluation, Validation, and Selection
Estimation: General
- Thema
-
mahalanobis distance
outliers
propensity score
treatment effects
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Canavire-Bacarreza, Gustavo
Castro, Luis
Ontiveros, Darwin Ugarte
- Ereignis
-
Veröffentlichung
- (wer)
-
MDPI
- (wo)
-
Basel
- (wann)
-
2021
- DOI
-
doi:10.3390/econometrics9020019
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:44 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Artikel
Beteiligte
- Canavire-Bacarreza, Gustavo
- Castro, Luis
- Ontiveros, Darwin Ugarte
- MDPI
Entstanden
- 2021