Arbeitspapier
Bayesian Mode Inference for Discrete Distributions in Economics and Finance
Detecting heterogeneity within a population is crucial in many economic and financial applications. Econometrically, this requires a credible determination of multimodality in a given data distribution. We propose a straightforward yet effective technique for mode inference in discrete data distributions which involves fitting a mixture of novel shifted-Poisson distributions. The credibility and utility of our proposed approach is demonstrated through empirical investigations on datasets pertaining to loan default risk and inflation expectations.
- Sprache
-
Englisch
- Erschienen in
-
Series: Tinbergen Institute Discussion Paper ; No. TI 2023-038/III
- Klassifikation
-
Wirtschaft
Bayesian Analysis: General
Single Equation Models; Single Variables: Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities
Methodology for Collecting, Estimating, and Organizing Microeconomic Data; Data Access
Methodology for Collecting, Estimating, and Organizing Macroeconomic Data; Data Access
Macroeconomics and Monetary Economics: General
Microeconomics: General
- Thema
-
Bayesian Inference
Mixture Models
Mode Inference
Multimodality
Shifted-Poisson.
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Cross, Jamie
Hoogerheide, Lennart
Labonne, Paul
van Dijk, Herman K.
- Ereignis
-
Veröffentlichung
- (wer)
-
Tinbergen Institute
- (wo)
-
Amsterdam and Rotterdam
- (wann)
-
2023
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:44 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Cross, Jamie
- Hoogerheide, Lennart
- Labonne, Paul
- van Dijk, Herman K.
- Tinbergen Institute
Entstanden
- 2023