Arbeitspapier

Inference on counterfactual distributions

In this paper we develop procedures for performing inference in regression models about how potential policy interventions affect the entire marginal distribution of an outcome of interest. These policy interventions consist of either changes in the distribution of covariates related to the outcome holding the conditional distribution of the outcome given covariates fixed, or changes in the conditional distribution of the outcome given covariates holding the marginal distribution of the covariates fixed. Under either of these assumptions, we obtain uniformly consistent estimates and functional central limit theorems for the counterfactual and status quo marginal distributions of the outcome as well as other function-valued effects of the policy, including, for example, the effects of the policy on the marginal distribution function, quantile function, and other related functionals. We construct simultaneous confidence sets for these functions; these sets take into account the sampling variation in the estimation of the relationship between the outcome and covariates. Our procedures rely on, and our theory covers, all main regression approaches for modeling and estimating conditional distributions, focusing especially on classical, quantile, duration, and distribution regressions. Our procedures are general and accommodate both simple unitary changes in the values of a given covariate as well as changes in the distribution of the covariates or the conditional distribution of the outcome given covariates of general form. We apply the procedures to examine the effects of labor market institutions on the U.S. wage distribution.

Sprache
Englisch

Erschienen in
Series: cemmap working paper ; No. CWP09/09

Klassifikation
Wirtschaft
Semiparametric and Nonparametric Methods: General
Single Equation Models; Single Variables: Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions
Duration Analysis; Optimal Timing Strategies
Wage Level and Structure; Wage Differentials
Labor Discrimination
Thema
policy effects
counterfactual distribution
quantile regression
duration regression
distribution regression
Regression
Nichtparametrisches Verfahren
Statistische Bestandsanalyse
Lohnstruktur
USA

Ereignis
Geistige Schöpfung
(wer)
Chernozhukov, Victor
Fernández-Val, Iván
Melly, Blaise
Ereignis
Veröffentlichung
(wer)
Centre for Microdata Methods and Practice (cemmap)
(wo)
London
(wann)
2009

DOI
doi:10.1920/wp.cem.2009.0909
Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Chernozhukov, Victor
  • Fernández-Val, Iván
  • Melly, Blaise
  • Centre for Microdata Methods and Practice (cemmap)

Entstanden

  • 2009

Ähnliche Objekte (12)