Artikel

Classical and Bayesian Inference for Income Distributions using Grouped Data

We propose a general framework for Maximum Likelihood (ML) and Bayesian estimation of income distributions based on grouped data information. The asymptotic properties of the ML estimators are derived and Bayesian parameter estimates are obtained by Monte Carlo Markov Chain (MCMC) techniques. A comprehensive simulation experiment shows that obtained estimates of the income distribution are very precise and that the proposed estimation framework improves the statistical precision of parameter estimates relative to the classical multinomial likelihood. The estimation approach is finally applied to a set of countries included in the World Bank database PovcalNet.

Language
Englisch

Bibliographic citation
Journal: Oxford Bulletin of Economics and Statistics ; ISSN: 1468-0084 ; Volume: 83 ; Year: 2020 ; Issue: 1 ; Pages: 32-65 ; Hoboken, NJ: Wiley

Classification
Wirtschaft

Event
Geistige Schöpfung
(who)
Eckernkemper, Tobias
Gribisch, Bastian
Event
Veröffentlichung
(who)
Wiley
(where)
Hoboken, NJ
(when)
2020

DOI
doi:10.1111/obes.12396
Handle
Last update
10.03.2025, 11:41 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Artikel

Associated

  • Eckernkemper, Tobias
  • Gribisch, Bastian
  • Wiley

Time of origin

  • 2020

Other Objects (12)