SEMANTIC KNOWLEDGE EMBEDDING DEEP LEARNING NETWORK FOR LAND COVER CLASSIFICATION

Abstract. Land cover classification is essential basic information and key parameters for environmental change research, geographical and national monitoring, and sustainable development planning. Deep learning can automatically and multi-level extract the features of complex features, which has been proven to be an effective method for information extraction. However, one of the major challenges of deep learning is its poor interpret-ability, which makes it difficult to understand and explain the reasoning behind its classification results. This paper proposes a deep cross-modal coupling model (CMCM) for integrating semantic features and visual features. The representation of knowledge map is indicatively introduced into remote sensing image classification. Compared to previous studies, the proposed method provides accurate descriptions of the complex semantic objects within a complex land cover environment. The results showed that the integration of semantic knowledge improved the accuracy and interpret-ability of land cover classification.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
SEMANTIC KNOWLEDGE EMBEDDING DEEP LEARNING NETWORK FOR LAND COVER CLASSIFICATION ; volume:XLVIII-1/W2-2023 ; year:2023 ; pages:85-90 ; extent:6
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences ; XLVIII-1/W2-2023 (2023), 85-90 (gesamt 6)

Urheber
Chen, J.
Du, X.
Zhang, J.
Wan, Y.
Zhao, W.

DOI
10.5194/isprs-archives-XLVIII-1-W2-2023-85-2023
URN
urn:nbn:de:101:1-2023121403142932699464
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:29 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Chen, J.
  • Du, X.
  • Zhang, J.
  • Wan, Y.
  • Zhao, W.

Ähnliche Objekte (12)