Artikel
Bitcoin at high frequency
This paper studies the behaviour of Bitcoin returns at different sample frequencies. We consider high frequency returns starting from tick-by-tick price changes traded at the Bitstamp and Coinbase exchanges. We find evidence of a smooth intra-daily seasonality pattern, and an abnormal trade- and volatility intensity at Thursdays and Fridays. We find no predictability for Bitcoin returns at or above one day, though, we find predictability for sample frequencies up to 6 h. Predictability of Bitcoin returns is also found to be time-varying. We also study the behaviour of the realized volatility of Bitcoin. We document a remarkable high percentage of jumps above 80% . We also find that realized volatility exhibits: (i) long memory; (ii) leverage effect; and (iii) no impact from lagged jumps. A forecast study shows that: (i) Bitcoin volatility has become more easy to predict after 2017; (ii) including a leverage component helps in volatility prediction; and (iii) prediction accuracy depends on the length of the forecast horizon.
- Sprache
-
Englisch
- Erschienen in
-
Journal: Journal of Risk and Financial Management ; ISSN: 1911-8074 ; Volume: 12 ; Year: 2019 ; Issue: 1 ; Pages: 1-20 ; Basel: MDPI
- Klassifikation
-
Wirtschaft
- Thema
-
bitcoin
realized volatility
HAR
high frequency
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Catania, Leopoldo
Sandholdt, Mads
- Ereignis
-
Veröffentlichung
- (wer)
-
MDPI
- (wo)
-
Basel
- (wann)
-
2019
- DOI
-
doi:10.3390/jrfm12010036
- Handle
- Letzte Aktualisierung
-
20.09.2024, 08:24 MESZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Artikel
Beteiligte
- Catania, Leopoldo
- Sandholdt, Mads
- MDPI
Entstanden
- 2019