Artikel

Analysis of Bitcoin price prediction using machine learning

The research purpose of this paper is to obtain an algorithm model with high prediction accuracy for the price of Bitcoin on the next day through random forest regression and LSTM, and to explain which variables have influence on the price of Bitcoin. There is much prior literature on Bitcoin price prediction research, and the research methods mainly revolve around the ARMA model of time series and the LSTM algorithm of deep learning. Although it cannot be proved by the Diebold-Mariano test that the prediction accuracy of random forest regression is significantly better than that of LSTM, the prediction errors RMSE and MAPE of random forest regression are better than those of LSTM. The changes in the variables that determine the price of Bitcoin in each period are also obtained through random forest regression. From 2015 to 2018, three US stock market indexes, NASDAQ, DJI, and S&P500 and oil price, and ETH price have impact on Bitcoin prices. Since 2018, the important variables have become ETH price and Japanese stock market index JP225. The relationship between accuracy and the number of periods of explanatory variables brought into the model shows that for predicting the price of Bitcoin for the next day, the model with only one lag of the explanatory variables has the best prediction accuracy.

Sprache
Englisch

Erschienen in
Journal: Journal of Risk and Financial Management ; ISSN: 1911-8074 ; Volume: 16 ; Year: 2023 ; Issue: 1 ; Pages: 1-25

Klassifikation
Management
Thema
Bitcoin
machine learning
LSTM
random forest regression

Ereignis
Geistige Schöpfung
(wer)
Chen, Junwei
Ereignis
Veröffentlichung
(wer)
MDPI
(wo)
Basel
(wann)
2023

DOI
doi:10.3390/jrfm16010051
Handle
Letzte Aktualisierung
10.03.2025, 11:41 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Chen, Junwei
  • MDPI

Entstanden

  • 2023

Ähnliche Objekte (12)