Arbeitspapier

How to control for many covariates? Reliable estimators based on the propensity score

We investigate the finite sample properties of a large number of estimators for the average treatment effect on the treated that are suitable when adjustment for observable covariates is required, like inverse probability weighting, kernel and other variants of matching, as well as different parametric models. The simulation design used is based on real data usually employed for the evaluation of labour market programmes in Germany. We vary several dimensions of the design that are of practical importance, like sample size, the type of the outcome variable, and aspects of the selection process. We find that trimming individual observations with too much weight as well as the choice of tuning parameters is important for all estimators. The key conclusion from our simulations is that a particular radius matching estimator combined with regression performs best overall, in particular when robustness to misspecifications of the propensity score is considered an important property.

Sprache
Englisch

Erschienen in
Series: IZA Discussion Papers ; No. 5268

Klassifikation
Wirtschaft
Single Equation Models; Single Variables: Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions
Thema
propensity score matching
kernel matching
inverse probability weighting
selection on observables
empirical Monte Carlo study
finite sample properties

Ereignis
Geistige Schöpfung
(wer)
Huber, Martin
Lechner, Michael
Wunsch, Conny
Ereignis
Veröffentlichung
(wer)
Institute for the Study of Labor (IZA)
(wo)
Bonn
(wann)
2010

Handle
Letzte Aktualisierung
10.03.2025, 11:41 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Huber, Martin
  • Lechner, Michael
  • Wunsch, Conny
  • Institute for the Study of Labor (IZA)

Entstanden

  • 2010

Ähnliche Objekte (12)