Konferenzbeitrag
Bootstrapping Supervised Machine-learning Polarity Classifiers with Rule-based Classification
In this paper, we explore the effectiveness of bootstrapping supervised machine-learning polarity classifiers using the output of domain-independent rule-based classifiers. The benefit of this method is that no labeled training data are required. Still, this method allows to capture in-domain knowledge by training the supervised classifier on in-domain features, such as bag of words. We investigate how important the quality of the rule-based classifier is and what features are useful for the supervised classifier. The former addresses the issue in how far relevant constructions for polarity classification, such as word sense disambiguation, negation modeling, or intensification, are important for this self-training approach. We not only compare how this method relates to conventional semi-supervised learning but also examine how it performs under more difficult settings in which classes are not balanced and mixed reviews are included in the dataset.
- Sprache
-
Englisch
- Thema
-
Computerlinguistik
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Wiegand, Michael
Klakow, Dietrich
- (wann)
-
2019-01-24
- Ereignis
-
Veröffentlichung
- (wer)
-
Alicante : Universidad de Alicante
- URN
-
urn:nbn:de:bsz:mh39-84473
- Letzte Aktualisierung
-
14.09.2023, 08:26 MESZ
Datenpartner
Leibniz-Institut für Deutsche Sprache - Bibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Konferenzbeitrag
Beteiligte
- Wiegand, Michael
- Klakow, Dietrich
- Alicante : Universidad de Alicante
Entstanden
- 2019-01-24