Konferenzbeitrag

Bootstrapping Supervised Machine-learning Polarity Classifiers with Rule-based Classification

In this paper, we explore the effectiveness of bootstrapping supervised machine-learning polarity classifiers using the output of domain-independent rule-based classifiers. The benefit of this method is that no labeled training data are required. Still, this method allows to capture in-domain knowledge by training the supervised classifier on in-domain features, such as bag of words. We investigate how important the quality of the rule-based classifier is and what features are useful for the supervised classifier. The former addresses the issue in how far relevant constructions for polarity classification, such as word sense disambiguation, negation modeling, or intensification, are important for this self-training approach. We not only compare how this method relates to conventional semi-supervised learning but also examine how it performs under more difficult settings in which classes are not balanced and mixed reviews are included in the dataset.

Bootstrapping Supervised Machine-learning Polarity Classifiers with Rule-based Classification

Urheber*in: Wiegand, Michael; Klakow, Dietrich

Rechte vorbehalten - Freier Zugang

0
/
0

Sprache
Englisch

Thema
Computerlinguistik

Ereignis
Geistige Schöpfung
(wer)
Wiegand, Michael
Klakow, Dietrich
(wann)
2019-01-24
Ereignis
Veröffentlichung
(wer)
Alicante : Universidad de Alicante

URN
urn:nbn:de:bsz:mh39-84473
Letzte Aktualisierung
14.09.2023, 08:26 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Leibniz-Institut für Deutsche Sprache - Bibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Konferenzbeitrag

Beteiligte

  • Wiegand, Michael
  • Klakow, Dietrich
  • Alicante : Universidad de Alicante

Entstanden

  • 2019-01-24

Ähnliche Objekte (12)