Konferenzbeitrag
Towards Bootstrapping a Polarity Shifter Lexicon using Linguistic Features
We present a major step towards the creation of the first high-coverage lexicon of polarity shifters. In this work, we bootstrap a lexicon of verbs by exploiting various linguistic features. Polarity shifters, such as ‘abandon’, are similar to negations (e.g. ‘not’) in that they move the polarity of a phrase towards its inverse, as in ‘abandon all hope’. While there exist lists of negation words, creating comprehensive lists of polarity shifters is far more challenging due to their sheer number. On a sample of manually annotated verbs we examine a variety of linguistic features for this task. Then we build a supervised classifier to increase coverage. We show that this approach drastically reduces the annotation effort while ensuring a high-precision lexicon. We also show that our acquired knowledge of verbal polarity shifters improves phrase-level sentiment analysis.
- Sprache
-
Englisch
- Thema
-
Computerlinguistik
Polarität
Natürliche Sprache
Maschinelles Lernen
Sprache
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Schulder, Marc
Wiegand, Michael
Ruppenhofer, Josef
Roth, Benjamin
- Ereignis
-
Veröffentlichung
- (wer)
-
Taipei : Asian Federation of Natural Language Processing
- (wann)
-
2019-02-11
- URN
-
urn:nbn:de:bsz:mh39-84787
- Letzte Aktualisierung
-
06.03.2025, 09:00 MEZ
Datenpartner
Leibniz-Institut für Deutsche Sprache - Bibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Konferenzbeitrag
Beteiligte
- Schulder, Marc
- Wiegand, Michael
- Ruppenhofer, Josef
- Roth, Benjamin
- Taipei : Asian Federation of Natural Language Processing
Entstanden
- 2019-02-11