Buchbeitrag
Automatically creating a lexicon of verbal polarity shifters: mono- and cross-lingual methods for German
In this paper we use methods for creating a large lexicon of verbal polarity shifters and apply them to German. Polarity shifters are content words that can move the polarity of a phrase towards its opposite, such as the verb “abandon” in “abandon all hope”. This is similar to how negation words like “not” can influence polarity. Both shifters and negation are required for high precision sentiment analysis. Lists of negation words are available for many languages, but the only language for which a sizable lexicon of verbal polarity shifters exists is English. This lexicon was created by bootstrapping a sample of annotated verbs with a supervised classifier that uses a set of data- and resource-driven features. We reproduce and adapt this approach to create a German lexicon of verbal polarity shifters. Thereby, we confirm that the approach works for multiple languages. We further improve classification by leveraging cross-lingual information from the English shifter lexicon. Using this improved approach, we bootstrap a large number of German verbal polarity shifters, reducing the annotation effort drastically. The resulting German lexicon of verbal polarity shifters is made publicly available.
- Sprache
-
Englisch
- Thema
-
Semantische Analyse
Verb
Polaritätsprofil
Wortliste
Automatische Sprachverarbeitung
Germanische Sprachen; Deutsch
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Schulder, Marc
Wiegand, Michael
Ruppenhofer, Josef
- Ereignis
-
Veröffentlichung
- (wer)
-
Stroudsburg PA, USA : The Association for Computational Linguistics
- (wann)
-
2019-02-14
- URN
-
urn:nbn:de:bsz:mh39-84984
- Letzte Aktualisierung
-
06.03.2025, 09:00 MEZ
Datenpartner
Leibniz-Institut für Deutsche Sprache - Bibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Buchbeitrag
Beteiligte
- Schulder, Marc
- Wiegand, Michael
- Ruppenhofer, Josef
- Stroudsburg PA, USA : The Association for Computational Linguistics
Entstanden
- 2019-02-14