Konferenzbeitrag
Evaluating the Morphological Compositionality of Polarity
Unknown words are a challenge for any NLP task, including sentiment analysis. Here, we evaluate the extent to which sentiment polarity of complex words can be predicted based on their morphological make-up. We do this on German as it has very productive processes of derivation and compounding and many German hapax words, which are likely to bear sentiment, are morphologically complex. We present results of supervised classification experiments on new datasets with morphological parses and polarity annotations.
- Language
-
Englisch
- Subject
-
Natürliche Sprache
Computerlinguistik
Polarität
Text Mining
Automatische Sprachverarbeitung
semantische Analyse
Sprache
- Event
-
Geistige Schöpfung
- (who)
-
Ruppenhofer, Josef
Steiner, Petra
Wiegand, Michael
- Event
-
Veröffentlichung
- (who)
-
Shoumen : Incoma Ltd.
- (when)
-
2019-02-13
- URN
-
urn:nbn:de:bsz:mh39-84917
- Last update
-
06.03.2025, 9:00 AM CET
Data provider
Leibniz-Institut für Deutsche Sprache - Bibliothek. If you have any questions about the object, please contact the data provider.
Object type
- Konferenzbeitrag
Associated
- Ruppenhofer, Josef
- Steiner, Petra
- Wiegand, Michael
- Shoumen : Incoma Ltd.
Time of origin
- 2019-02-13