Konferenzbeitrag

Predictive Features in Semi-Supervised Learning for Polarity Classification and the Role of Adjectives

In opinion mining, there has been only very little work investigating semi-supervised machine learning on document-level polarity classification. We show that semi-supervised learning performs significantly better than supervised learning when only few labelled data are available. Semi-supervised polarity classifiers rely on a predictive feature set. (Semi-)Manually built polarity lexicons are one option but they are expensive to obtain and do not necessarily work in an unknown domain. We show that extracting frequently occurring adjectives & adverbs of an unlabeled set of in-domain documents is an inexpensive alternative which works equally well throughout different domains.

Sprache
Englisch

Thema
Computerlinguistik
Text Mining
Natürliche Sprache
Maschinelles Lernen
Polarität
Sprache

Ereignis
Geistige Schöpfung
(wer)
Wiegand, Michael
Klakow, Dietrich
Ereignis
Veröffentlichung
(wer)
Uppsala : Northern European Association for Language Technology
(wann)
2019-01-30

URN
urn:nbn:de:bsz:mh39-84588
Letzte Aktualisierung
06.03.2025, 09:00 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Leibniz-Institut für Deutsche Sprache - Bibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Konferenzbeitrag

Beteiligte

  • Wiegand, Michael
  • Klakow, Dietrich
  • Uppsala : Northern European Association for Language Technology

Entstanden

  • 2019-01-30

Ähnliche Objekte (12)