Artikel

A fast algorithm for the computation of HAC covariance matrix estimators

This paper considers the algorithmic implementation of the heteroskedasticity and autocorrelation consistent (HAC) estimation problem for covariance matrices of parameter estimators. We introduce a new algorithm, mainly based on the fast Fourier transform, and show via computer simulation that our algorithm is up to 20 times faster than well-established alternative algorithms. The cumulative effect is substantial if the HAC estimation problem has to be solved repeatedly. Moreover, the bandwidth parameter has no impact on this performance. We provide a general description of the new algorithm as well as code for a reference implementation in R.

Language
Englisch

Bibliographic citation
Journal: Econometrics ; ISSN: 2225-1146 ; Volume: 5 ; Year: 2017 ; Issue: 1 ; Pages: 1-16 ; Basel: MDPI

Classification
Wirtschaft
Econometrics
Large Data Sets: Modeling and Analysis
Financial Econometrics
Computational Techniques; Simulation Modeling
Financial Forecasting and Simulation
Subject
GMM
HAC estimation
Newey-West estimator
Toeplitz matrices
discrete Fourier transformation (DFT)

Event
Geistige Schöpfung
(who)
Heberle, Jochen
Sattarhoff, Cristina
Event
Veröffentlichung
(who)
MDPI
(where)
Basel
(when)
2017

DOI
doi:10.3390/econometrics5010009
Handle
Last update
10.03.2025, 11:45 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Artikel

Associated

  • Heberle, Jochen
  • Sattarhoff, Cristina
  • MDPI

Time of origin

  • 2017

Other Objects (12)