Artikel
Robust covariance estimators for mean-variance portfolio optimization with transaction lots
This study presents an improvement to the mean-variance portfolio optimization model, by considering both the integer transaction lots and a robust estimator of the covariance matrices. Four robust estimators were tested, namely the Minimum Covariance Determinant, the S, the MM, and the Orthogonalized Gnanadesikan-Kettenring estimator. These integer optimization problems were solved using genetic algorithms. We introduce the lot turnover measure, a modified portfolio turnover, and the Robust Sharpe Ratio as the measure of portfolio performance. Based on the simulation studies and the empirical results, this study shows that the robust estimators outperform the classical MLE when data contain outliers and when the lots have moderate sizes, e.g. 500 shares or less per lot.
- Sprache
-
Englisch
- Erschienen in
-
Journal: Operations Research Perspectives ; ISSN: 2214-7160 ; Volume: 7 ; Year: 2020 ; Pages: 1-11 ; Amsterdam: Elsevier
- Klassifikation
-
Wirtschaft
- Thema
-
Finance
Markowitz portfolio
Transaction lots
Robust estimation
Genetic algorithm
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Rosadi, Dedi
Setiawan, Ezra Putranda
Templ, Matthias
Filzmoser, Peter
- Ereignis
-
Veröffentlichung
- (wer)
-
Elsevier
- (wo)
-
Amsterdam
- (wann)
-
2020
- DOI
-
doi:10.1016/j.orp.2020.100154
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:44 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Artikel
Beteiligte
- Rosadi, Dedi
- Setiawan, Ezra Putranda
- Templ, Matthias
- Filzmoser, Peter
- Elsevier
Entstanden
- 2020