Arbeitspapier

Recursive Differencing for Estimating Semiparametric Models

Controlling the bias is central to estimating semiparametric models. Many methods have been developed to control bias in estimating conditional expectations while main- taining a desirable variance order. However, these methods typically do not perform well at moderate sample sizes. Moreover, and perhaps related to their performance, non-optimal windows are selected with undersmoothing needed to ensure the appro- priate bias order. In this paper, we propose a recursive differencing estimator for conditional expectations. When this method is combined with a bias control targeting the derivative of the semiparametric expectation, we are able to obtain asymptotic normality under optimal windows. As suggested by the structure of the recursion, in a wide variety of triple index designs, the proposed bias control performs much better at moderate sample sizes than regular or higher order kernels and local polynomials.

Sprache
Englisch

Erschienen in
Series: Working Paper ; No. 2019-03

Klassifikation
Wirtschaft
Semiparametric and Nonparametric Methods: General
Thema
semiparametric model
bias reduction
conditional expectation

Ereignis
Geistige Schöpfung
(wer)
Shen, Chan
Klein, Roger W.
Ereignis
Veröffentlichung
(wer)
Rutgers University, Department of Economics
(wo)
New Brunswick, NJ
(wann)
2019

Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Shen, Chan
  • Klein, Roger W.
  • Rutgers University, Department of Economics

Entstanden

  • 2019

Ähnliche Objekte (12)